100 POINTS
NAME:
Show your work on this paper.
(1) Evaluate the following integrals.
(3 points each)

$$
\begin{array}{ll}
\text { (a) } \int \cos 6 x d x & u=6 x \\
& d u=6 d x \\
\frac{1}{6} \int \cos u d u= & \frac{1}{6} \sin u+C=\frac{1}{6} \sin (6 x)+C
\end{array}
$$

remember the consent
(b) $\int \frac{1}{x^{3}} d x=\int x^{-3} d x=\frac{x^{-2}}{-2}+c=-\frac{1}{2 x^{2}}+c$
super easy to check indefinite integrals, just differentiate:

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{-1}{2 x^{2}}\right) & =\frac{d}{d x}\left(\frac{-1}{2} x^{-2}\right) \\
& =x^{-3}=\frac{1}{x^{3}}
\end{aligned}
$$

(3) In this problem you will evaluate $\int_{0}^{6}(x-2) d x$ using the 4 methods discussed in class. (19 points)
a) Estimate the value of $\int_{0}^{6}(x-2) d x$ using $n=3$ subintervals and using the left endpoints as sample points. Draw the rectangles you used in this approximation.

$$
1(f(0)+f(1)+f(2)+f(3)+f(4)+f(5))
$$

$$
-2 r-1+0+1+2+3
$$

3
b) Find the exact value using the Riemann sum definition with sample points being right endpoints and the fact that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

$$
\Delta x=\frac{b-a}{n}=\frac{b}{n}
$$

$$
\begin{aligned}
& x_{i}=a+i \Delta x=0+i \frac{b}{n} \\
& f\left(x_{i}\right)=i \frac{b}{n}-2
\end{aligned}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{L 6}{n}-2\right)\left(\frac{6}{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{36}{n^{2}} i-\frac{12}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{36}{n^{2}} \frac{n(n+1)}{2}-\frac{12}{n} \cdot n \\
& =\lim _{n \rightarrow \infty} \frac{18(n+1)}{n}-12=\lim _{1 \rightarrow \infty}\left(18+\frac{18}{n}-12\right)=6
\end{aligned}
$$

c) Compute $\int_{0}^{6}(x-2) d x$ using the area interpretation.

Area above - area below

$$
\frac{1}{2} \cdot 4 \cdot 4-\frac{1}{2} \cdot 2 \cdot 2=6
$$

d) Compute $\int_{0}^{6}(x-2) d x$ using the FTC part 2 and the antiderivative. should. as they
(4) Evaluate the following integrals. Give simplified, exact answers. (7 points each)
(a) On this problem only, you MUST make a u-substitution and change to U's limits. On subsequent definite integrals you can choose to switch to u's limits or not, but use proper notation.

$$
\begin{array}{lll}
\int_{0}^{\pi / 2} \cos x \sqrt{\sin x} d x & \begin{array}{c}
u=\sin x \\
d u=\cos t d x
\end{array} & \begin{array}{l}
x=\frac{\pi}{x} \\
x=\frac{\pi}{0}
\end{array} \\
\begin{array}{l}
u=1 n \\
u=0 \\
u=0
\end{array} \\
\int_{0}^{1} u^{1 / 2} d u=\frac{2}{3} u^{3 / 2} J_{0}^{1}=\frac{2}{3} &
\end{array}
$$

(b) $\quad \int \frac{\sqrt{t}-7 t^{2}}{t^{2}} d t=\int\left(\frac{\sqrt{t}}{t^{2}}-\frac{7 t^{2}}{t^{2}}\right) d t=\int\left(t^{-3 / 2}-7\right) d t$

$$
\begin{aligned}
& =-2 t^{-1 / 2}-7 t+c \\
& =\frac{-2}{\sqrt{E}}-7 t+c
\end{aligned}
$$

(c) $\int_{2 / 3}^{3} \frac{1}{\sqrt[3]{1-3 x}} d x \quad \begin{array}{lll}u=1-3 x & x=3 & -8 \\ d u=-3 d x & x=2 / 3 & -1\end{array}$

$$
\begin{aligned}
& \left.-\frac{1}{3} \int_{-1}^{18} \sqrt[3]{\sqrt[3]{u}} d u=\frac{1}{3} \int^{-8}\left(u^{-1 / 3}\right) d u=-\frac{1}{3} \frac{3}{2} u^{2 / 3}\right]_{-1}^{-8} \\
& \quad=-\frac{1}{2}\left((-8)^{-1 / 3}-(-1)^{2 / 3}\right)=-\frac{1}{2}(4-1)=-\frac{3}{2}
\end{aligned}
$$

(d) $\int_{-1}^{3}(5 x-|x|) d x \quad|x|=\left\{\begin{array}{lll}x & \text { if } x \geq 0 \Rightarrow 5 x-|x|=4 x & \text { If } x \geqslant 0 \\ -x & \text { if } x<0 & 5 x-|x|=6 x\end{array} \quad x<0\right.$

$$
\begin{gathered}
\int_{-1}^{0} 6 x d x+\int_{0}^{3} 4 x d x \\
\left.\left.3 x^{2}\right]_{-1}^{0}+2 x^{2}\right]_{0}^{3} \\
-3+18=15
\end{gathered}
$$

(4 continued)

$$
\begin{array}{ll}
\text { (4 continued) } & \quad \begin{array}{ll}
u & =\frac{1}{x}=x \\
\text { (e) } \quad \int \frac{\cos \left(\frac{1}{x}\right)}{3 x^{2}} d x & d u
\end{array}=-x^{-2} d x=-\frac{1}{x^{2}} d x \\
= & \frac{1}{3} \int \cos u d u=-\frac{1}{3} \sin u+c=-\frac{1}{3} \sin \left(\frac{1}{x}\right)+C
\end{array}
$$

(f) $\int x^{3} \sqrt{x^{2}+1} d x$

$$
u=x^{2}+1 \quad x^{2}=6-1
$$

$$
\frac{1}{2} \int x^{2} x \sqrt{x^{2}+1} d x \text { need } x^{2} \text { in terms of } u \text {) }
$$

$$
\left.\frac{1}{2} \int u-1 \sqrt{u} d u=\frac{1}{2} \int 1 u^{3 / 2}-u^{1 / 2}\right) d u
$$

$$
=\frac{1}{2}\left(\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}+c\right.
$$

$$
=\frac{1}{5}\left(x^{2}+1\right)^{5 / 2}-\frac{1}{3}\left(x^{2}+1\right)^{3 / 2}+c
$$

(g) $\int_{-1}^{1} \frac{x}{\sqrt[3]{1+x^{2}}} d x$ shortway, notice integiand is odd
(6) Given the region bounded by the graphs of $y=\sqrt{x-1} ; \quad y=3-x$, and the x axis
(a) Set up, but do not evaluate, an integral expression to find the area by integrating with respect to x.

(b) Set up, but do not evaluate, an integral expression to find the area by integrating with respect to y.

(c) Find the area by evaluating one of the above. If time-do both ways to cheek

$$
\begin{aligned}
& \left.\int_{0}^{1}\left(2-y-y^{2}\right) d y=2 y-\frac{1}{2} y^{2}-\frac{1}{3} y^{3}\right]_{0}^{1}=2-\frac{1}{2}-\frac{1}{3}=\frac{7}{6} \\
& \begin{aligned}
\int_{1}^{2} \sqrt{x-1} d x+\int_{2}^{3}(3-x) d x & \left.\left.=\frac{2}{3}(x-1)^{3 / 2}\right]_{1}^{2}+3 x-\frac{1}{2} x^{2}\right]_{2}^{3} \\
u=x-1 & =\frac{2}{3}+\frac{9}{2}-4=\frac{31}{6}-\frac{2 y}{6}=\frac{7}{6}
\end{aligned}
\end{aligned}
$$

(7)

(8 points)

Area above - Area Below $64-189$
-125
(a) Given the graph of $y=f(x)$ and the areas shown in the figure above, find the following.

$$
\int_{0}^{2} f(x) d x=-18 \int_{2}^{5} f(x) d x=-189 \int_{0}^{5} f(x) d x=-125
$$

(b) Write an integral expression in terms of $f(x)$ which would give the total enclosed area.

$$
\int_{0}^{2} f(x) d x-\int_{2}^{5} f(x) d x
$$

